Вторник, 18.12.2018, 15:28Главная | Регистрация | Вход

Меню сайта

Личная панель

Гость

Сообщения:

Группа:
Гости
Время:15:28

Логин: Гость
ID:
Вы здесь: -й день
Ваш IP:34.228.142.94
Профиль
Список пользователей
Изменить информацию
Отправить сообщение
Читать ЛС ()


Гость, мы рады вас видеть. Пожалуйста зарегистрируйтесь или авторизуйтесь!

Категории раздела

Полезно [12]
Статьи/Анонсы [49]
Юмор/Истории [49]
Всякое [29]
Раскрутка и заработок в сети [9]
Раскрутка сайтов и заработок в сети

Наш опрос

Оцените мой сайт
javascript:// javascript://
Всего ответов: 61

Найди себя!!!

Приват Банк

Статистика

Rambler's Top100 Seo анализ сайта Яндекс.Метрика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Реклама от WMlink

Реклама Links-wm

Реклама Так.ru

Каталог статей
Главная » Статьи » Полезно

Интерфейсы - все о них (Часть 1)

Интерфейсы - все о них

В данной статье предложен один из самых огромных обзоров интерфейсов, с которыми работает различная электронная аппаратура. Рассматриваемые интерфейсы: USB, IEEE-1394/FireWire, Cinch/RCA: композитный видео, аудио, HDTV, SPDIF, PS/2, VGA, DVI, RJ-45, RJ-11, S-Video, SCART, HDMI, DisplayPort, TRS (jack), Serial ATA (SATA), ATA/133 (Parallel ATA, UltraDMA/133 или E-IDE), AGP, PCI Express, PCI и PCI-X, ATX. Теперь Вы сможете полностью разобраться во всем многообразии интерфейсов. Весь материал обильно сдобрен изображениями, так что не запутаетесь.

USB

USB

USB

Разъёмы Universal Serial Bus (USB) предназначены для подключения к компьютеру таких внешних периферийных устройств, как мышь, клавиатура, портативный жёсткий диск, цифровая камера, VoIP-телефон (Skype) или принтер. Теоретически, к одному host-контроллеру USB можно подключить до 127 устройств. Максимальная скорость передачи составляет 12 Мбит/с для стандарта USB 1.1 и 480 Мбит/с для Hi-Speed USB 2.0. Разъёмы стандартов USB 1.1 и Hi-Speed 2.0 одинаковы. Различия кроются в скорости передачи и наборе функций host-контроллера USB компьютера, да и самих USB-устройств. Более подробно о различиях можно прочитать в нашей статье. USB обеспечивает устройства питанием, поэтому они могут работать от интерфейса без дополнительного питания (если USB-интерфейс даёт необходимое питание, не больше 500 мА на 5 В).

Всего существует три типа USB-разъёмов:

Разъём "тип A": как правило имеется на всех современных материнских платах в большом колечечестве (4, 6 и более).

Разъём "тип B": обычно находится на самом USB-устройстве (если кабель съёмный).

Разъём мини-USB: обычно используется цифровыми видеокамерами, внешними жёсткими дисками и т.д.

USB "тип A" (слева) и USB "тип B" (справа):
Такой кабль как правило используется с принтерами, сканерами, МФУ.

USB

Кабель расширения USB (должен быть не длиннее 5 м).
Такой кабель расширения можно использовать как "удлиннитель" если от устройства до системного блока компьютера не хвататет стандартного кабеля, также такой кабель используют как порт для подключения USB-флешнакопителей ("флешек"): часто на недорогих корпусах нет возможности вывести на переднюю панель один-два USB-разъема, а вставлять "флешку" сзади системного блока неудобно, с помощью такого кабеля можно вывести USB-разъем к пользователю.

USB

Разъёмы мини-USB обычно встречаются на цифровых камерах и внешних жёстких дисках.

Логотип USB всегда присутствует на разъёмах.


Кабель-двойник. Каждый USB-порт даёт 5 В/500 мА. Если нужно больше питания (скажем, для мобильного жёсткого диска), то данный кабель позволяет питаться и от второго USB-порта (500 + 500 = 1000 мА).

В данном случае USB всего лишь обеспечивает питание для зарядного устройства.

Адаптер USB/PS2

Данный адаптер, как можно догадаться, используется для поключения USB-клавиатуры и USB-мыши к компьютеру, у которого нет USB-портов (или они все заняты).

USB 3.0

В 2000 году стандарт USB получил ещё одно обновление: появилась версия USB 2.0, которая увеличила пропускную способность в 40 раз - до 480 Мбит/с в высокоскоростном режиме. К счастью, шина USB 2.0 была по-прежнему совместима с USB 1.1, что было довольно важно для поддержки USB-брелоков первого поколения, которые изначально строились на стандарте USB 1.1 с пропускной способностью 12 Мбит/с. 


И сейчас можно заметить как работают устройства USB 2.0 с системными платами USB 1.1 - при подключении к компьютеру "быстрого" устройства операционная система сообщает, что "это устройство может работать быстрее".

После своего широкого внедрения USB 2.0 удалось полностью заменить последовательный и параллельный интерфейсы - этот факт наиболее заметен, если посмотреть на последние материнские платы. Только немногие продукты по-прежнему содержат параллельный и последовательный порты, поскольку они уже не требуются для потребительской периферии. Устаревшие интерфейсы конечно отмерли только для рядовых пользователей, COM и LPT необходимы до сих пор для серверов, для промышленных компьютеров, для любителей радиоэлектроники (через СОМ подключаются программаторы микросхем).
USB Implementers Forum финализировал спецификации стандарта USB 3.0 в конце 2008 года. Как и можно было ожидать, новый стандарт увеличил пропускную способность, хотя прирост не такой значительный, как 40-кратное увеличение скорости при переходе от USB 1.1 на USB 2.0. В любом случае, 10-кратное повышение пропускной способности можно приветствовать. USB 3.0 поддерживает максимальную скорость передачи 5 Гбит/с. Пропускная способность почти в два раза превышает современный стандарт Serial ATA (3 Гбит/с с учётом передачи информации избыточности).

Каждый энтузиаст подтвердит, что интерфейс USB 2.0 является основным "узким местом" современных компьютеров и ноутбуков, поскольку его пиковая "чистая" пропускная способность составляет от 30 до 35 Мбайт/с. Но у современных 3,5" жёстких дисков для настольных ПК скорость передачи уже превысила 100 Мбайт/с (появляются и 2,5" модели для ноутбуков, приближающиеся к данному уровню). Скоростные твёрдотельные накопители успешно превзошли порог 200 Мбайт/с. А 5 Гбит/с (или 5120 Мбит/с) соответствует 640 Мбайт/с.
Конечно, основной целью интерфейса USB 3.0 является повышение доступной пропускной способности, однако новый стандарт эффективно оптимизирует энергопотребление. Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия. Напротив, у USB 3.0 есть четыре состояния подключения, названные U0-U3. Состояние подключения U0 соответствует активной передаче данных, а U3 погружает устройство в "сон".

Если подключение бездействует, то в состоянии U1 будут отключены возможности приёма и передачи данных. Состояние U2 идёт ещё на шаг дальше, отключая внутренние тактовые импульсы. Соответственно, подключённые устройства могут переходить в состояние U1 сразу же после завершения передачи данных, что, как предполагается, даст ощутимые преимущества по энергопотреблению, если сравнивать с USB 2.0.

 

Кроме разных состояний энергопотребления стандарт USB 3.0 отличается от USB 2.0 и более высоким поддерживаемым током. Если USB 2.0 предусматривал порог тока 500 мА, то в случае нового стандарта ограничение было сдвинуто до планки 900 мА. Ток при инициации соединения был увеличен с уровня 100 мА у USB 2.0 до 150 мА у USB 3.0. Оба параметра весьма важны для портативных жёстких дисков, которые обычно требуют чуть большие токи. Раньше проблему удавалось решить с помощью дополнительной вилки USB, получая питание от двух портов, но используя только один для передачи данных, пусть даже это нарушало спецификации USB 2.0.

USB 3.0 не использует волоконную оптику, поскольку она слишком дорога для массового рынка. Поэтому перед нами старый добрый медный кабель. Однако теперь у него будет девять, а не четыре провода. Передача данных осуществляется по четырём из пяти дополнительных проводов в дифференциальном режиме (SDP - Shielded Differential Pair). Одна пара проводов отвечает за приём информации, другая - за передачу. Принцип работы похож на Serial ATA, при этом устройства получают полную пропускную способность в обоих направлениях. Пятый провод - "земля".

 

Стандарт USB 3.0 обратно совместим с USB 2.0, то есть вилки кажутся такими же, как и обычные вилки типа A. Контакты USB 2.0 остались на прежнем месте, но в глубине разъёма теперь располагаются пять новых контактов. Это означает, что вам нужно полностью вставлять вилку USB 3.0 в порт USB 3.0, чтобы удостовериться в режиме работы USB 3.0, для которого требуются дополнительные контакты. Иначе вы получите скорость USB 2.0.

Ситуация получилась схожей и для USB-вилки "типа B", хотя различия визуально более заметны. Вилку USB 3.0 можно определить по пяти дополнительным контактам.

У разъёмов для мобильных устройств изменения более заметны. Старый разъём Micro-B USB 2.0 имел ширину 6,86 мм, однако теперь ширина разъёма USB 3.0 Micro-B для мобильных телефонов, плееров и смартфонов увеличилась до 12,25 мм. Опять же, разъёмы были сделаны таким образом, чтобы обеспечить совместимость c USB 2.0.

Длина кабеля тоже изменилась. Стандарт USB 2.0 позволял использовать кабели с длиной до пяти метров, однако USB 3.0 поддерживает максимальную длину только три метра.

 

Конечно, USB 3.0 требует новых USB-концентраторов (хабов), позволяющих подключать несколько устройств через одно физическое соединение. Концентраторы USB 3.0 будут сложнее, чем устройства класса USB 2.0, поскольку им придётся включать в себя два концентратора: первый SuperSpeed для работы USB 3.0, второй - для поддержки USB 2.0. Пользователю всё будет прозрачно, поскольку все порты будут соединяться к обоим концентраторам. Впрочем, такой подход всё же не повышает максимальное количество устройств на порт USB, которое осталось 127.

Реализация двух таких концентраторов в одном устройстве наверняка негативно скажется на цене первого поколения хабов USB 3.0, но, как нам кажется, будущие поколения начнут использовать один унифицированный чип, который будет поддерживать стандарты обоих типов. Кроме того, нам следует отметить возможные проблемы совместимости со стандартом USB 1.1, поскольку устройства USB 3.0 не гарантируют совместимость со старым стандартом на 12 Мбит/с. Поэтому концентраторы USB 3.0 не будут работать со старыми контроллерами USB 1.1.

IEEE-1394 / FireWire / i.Link

Кабель FireWire с 6-контактной вилкой на одном конце и 4-контактной на другом.

Под официальным названием IEEE-1394 скрывается последовательный интерфейс, повсеместно использующийся для цифровых видеокамер, внешних жёстких дисков и различных сетевых устройств. Его также называют FireWire (от Apple) и i.Link (от Sony). На данный момент 400-Мбит/с стандарт IEEE-1394 сменяется 800-Мбит/с IEEE-1394b (также известным как FireWire-800). Обычно устройства FireWire подключаются через 6-контактную вилку, которая обеспечивает питание. У 4-контактной вилки питание не подводится. Устройства FireWire-800, с другой стороны, используют 9-контактные кабели и разъёмы.


Эта карта FireWire обеспечивает два больших 6-контактных порта и один маленький 4-контактный.

6-контактный разъём с питанием.

4-контактный разъём без питания. Такой обычно используется на цифровых видеокамерах и ноутбуках.

"Тюльпан" (Cinch/RCA): композитный видео, аудио, HDTV

Цветовую кодировку можно только приветствовать: жёлтый для видео (FBAS), белый и красный "тюльпаны" для аналогового звука, а также три "тюльпана" (красный, синий, зелёный) для компонентного выхода HDTV


Разъёмы "тюльпан" используются в паре с коаксиальными кабелями для многих электронных сигналов. Обычно вилки "тюльпан" используют цветовое кодирование, которое приведено в следующей таблице.

Предупреждение. Можно перепутать цифровую вилку SPDIF с аналоговым композитным разъёмом видео, так что всегда читайте инструкцию, прежде чем подключать оборудование. Кроме того, и цветовая кодировка у SPDIF бывает совершенно разная. Наконец, можно перепутать красный "тюльпан" HDTV с правым звуковым каналом. Помните, что вилки HDTV всегда бывают в группах по три, то же самое можно сказать и про гнёзда.


Вилки "тюльпан" имеют разное цветовое кодирование в зависимости от типа сигнала.

Два типа SPDIF (цифровой звук): "тюльпан" слева и TOSLINK (оптоволокно) справа.

Оптический интерфейс TOSKLINK тоже используется для цифровых сигналов SPDIF.

Переходник с разъёма SCART на "тюльпаны" (композитный видео, 2x аудио и S-Video)

RCA - Radio Corporation of America 
SPDIF - Sony/Philips Digital Interfaces

PS/2


Два варианта исполнения портов PS/2: один окрашенный (зеленый - "мышь", фиолетовый - клавиатура), другой - нет.

Названные в честь "старушки" IBM PS/2 эти разъёмы сегодня широко используются в качестве стандартных интерфейсов для клавиатуры и мыши, но они постепенно уступают место USB. Сегодня распространена следующая схема цветового кодирования.

Фиолетовый: клавиатура. 
Зелёный: мышь.

Распиновка PS/2

Рисунок 1 - Распиновка разъема PS/2

Таблица 1 - Расп 

Кроме того, сегодня весьма часто можно встретить гнёзда PS/2 нейтрального цвета, как для мыши, так и для клавиатуры. Перепутать разъёмы для клавиатуры и мыши на материнской плате вполне возможно, но никакого вреда это не принесёт. Если вы так сделаете, то быстро обнаружите ошибку: не будет работать ни клавиатура, ни мышь. Многие ПК даже не загрузятся, если мышь и клавиатура подключены неправильно. Исправить ошибку очень просто: поменяйте местами вилки, и всё заработает!


Переходник USB/PS/2. О нем мы уже говорили выше.

Интерфейс VGA

Порт VGA на графической карте.

ПК достаточно давно использует 15-контактный интерфейс Mini-D-Sub для подключения монитора (HD15). С помощью правильного переходника можно подключить такой монитор и к выходу DVI-I (DVI-integrated) графической карты. Интерфейс VGA передаёт сигналы красного, зелёного и синего цветов, а также информацию о горизонтальной (H-Sync) и вертикальной (V-Sync) синхронизациях.


Интерфейс VGA на кабеле монитора.


Новые графические карты обычно оснащаются двумя выходами DVI. Но с помощью переходника DVI-VGA можно легко изменить интерфейс.

Этот адаптер предоставляет информацию для интерфейса VGA.

VGA - Video Graphics Array


Интерфейс DVI

DVI является интерфейсом монитора, разработанным, главным образом, для цифровых сигналов. Чтобы не требовалось переводить цифровые сигналы графической карты в аналоговые, а затем выполнять обратное преобразование в дисплее.


Графическая карта с двумя портами DVI может работать одновременно с двумя (цифровыми) мониторами.

Поскольку переход с аналоговой на цифровую графику протекает медленно, разработчики графического оборудования позволяют использовать параллельно обе технологии. Кроме того, современные графические карты легко справятся с двумя мониторами.

Широко распространённый интерфейс DVI-I позволяет одновременно использовать как цифровое, так и аналоговое подключение.

Интерфейс DVI-D встречается весьма редко. Он позволяет только цифровое подключение (без возможности подсоединить аналоговый монитор).

В комплект со многими графическими картами входит переходник с интерфейса DVI-I на VGA, который позволяет подключать старые мониторы с 15-контактной вилкой D-Sub-VGA.


Полный список типов DVI (чаще всего используется интерфейс с аналоговым и цифровым подключениями DVI-I).

DVI - Digital Visual Interface

Распиновка DVI и VGA

VGA=Video Graphics adapter or Video Graphics Array. VESA=Video Electronics Standards Association. DDC=Display Data Channel.

DVI распиновка

   

RJ45 для LAN и ISDN


Сетевые кабели RJ45 можно найти с различной длиной и расцветкой.

В сетях чаще всего используются разъёмы для витой пары. На данный момент 100-Мбит/с Ethernet уступает место гигабитному Ethernet (он работает на скоростях до 1 Гбит/с). Но все они используют вилки RJ45. Кабели Ethernet можно разделить на два вида.
1. Классический патч-кабель, который используется для подключения компьютера к концентратору или коммутатору.
2. Кабель с перекрёстной обжимкой (crossover), который используется для соединения между собой двух компьютеров или двух концентраторов.



Сетевой порт на PCI-карте.

Современные карты используют светодиоды для отображения активности.

В Европе и Северной Америке устройства ISDN и сетевое оборудование используют тот же самый RJ45. Следует отметить, что вилки RJ45 разрешают "горячее подключение", причем, если вы ошибётесь, ничего страшного не случится.

RJ-45 распиновка

Стандарт RJ11


Кабель RJ11.

Интерфейсы RJ45 и RJ11 очень похожи друг на друга, но у RJ11 всего четыре контакта, а у RJ45 их восемь. В компьютерных системах RJ11 используется, главным образом, для подключения к модемам телефонной линии. Кроме того, существует множество переходников на RJ11, так как телефонные розетки в каждой стране могут быть собственного стандарта.


Порт RJ11 на ноутбуке.

Модемный интерфейс RJ11.

Переходники RJ11 позволяют подключать разные типы телефонных розеток. На иллюстрации розетка из Германии.

S-Video (Hosiden, Y/C)

Интерфейс S-Video.

4-контактная вилка Hosiden использует разные линии для яркости (Y, яркость и синхронизация данных) и цвета (C, цвет). Разделение сигналов яркости и цвета позволяет достичь лучшего качества картинки по сравнению с композитным интерфейсом видео (FBAS). Но в мире аналоговых подключений на первом месте по качеству находится всё же компонентный интерфейс HDTV, за которым следует S-Video. Только цифровые сигналы вроде DVI (TDMS) или HDMI (TDMS) обеспечивают более высокое качество картинки.


Порт S-Video на графической карте.

SCART

SCART является комбинированным интерфейсом, широко распространённым в Европе и Азии. Этот интерфейс сочетает сигналы S-Video, RGB и аналогового стерео. Компонентные режимы YpbPr и YcrCb не поддерживаются.


Порты SCART для телевизора и видеомагнитофона.

Этот переходник преобразует SCART в S-Video и аналоговое аудио ("тюльпаны").

SCART распайка

S-Video-SCART распайка

HDMI

Перед нами цифровой мультимедийный интерфейс для несжатых HDTV-сигналов с разрешением до 1920x1080 (или 1080i), со встроенным механизмом защиты авторских прав Digital Rights Management (DRM). Текущая технология использует вилки типа A с 19 контактами.

Пока мы не встречали потребительского оборудования, использующего 29-контактные вилки типа B, поддерживающие разрешение больше 1080i. Интерфейс HDMI использует ту же технологию сигналов TDMS, что и DVI-D. Это объясняет появление переходников HDMI-DVI. Кроме того, HDMI может обеспечить до 8 каналов звука с разрядностью 24 бита и частотой 192 кГц. Обратите внимание, что кабели HDMI не могут быть длиннее 15 метров.


Переходник HDMI/DVI.


HDMI - High Definition Multimedia Interface

DisplayPort

DisplayPort призван заменить собой интерфейсы DVI и HDMI. Но ему не просто будет "свергнуть" HDMI, поскольку данный стандарт прочно утвердился на рынке. Как и HDMI, DisplayPort передаёт как видеосигналы, так и цифровой звук. Впрочем, у DisplayPort всё же есть полезные преимущества, такие как, например, возможность напрямую управлять дисплеем с помощью интерфейса кабеля. Кроме того, за использование DisplayPort производителям не нужно отчислять роялти, что положительно сказывается на цене продуктов. Кабель DisplayPort тоньше, чем кабели HDMI и DVI. Он почти такой же тонкий, как USB-кабель. Подобные приятные мелочи облегчают подключение кабелей. Стоит также отметить, что DisplayPort поддерживает очень высокие разрешения, подобные разрешениям, с которыми работает HDMI типа B.

 


TRS, "Джек", "мини-джек" и "микро-джек"

Разъём TRS (Tip, Ring, Sleeve) — распространённый разъём для передачи аудиосигнала. Обычно имеет три контакта, но есть и модификации с двумя (TS) и четырьмя (TRRS) контактами. Существует три стандартых диаметра разъема — 1/4" (6,35 мм), 3,5 мм и 2,5 мм. Часто 1/4" TRS называют «джек» (англ. jack), а 3,5 мм TRS «мини-джек» (англ. mini-jack).

Разъём "джек" появился в XIX веке, им пользовались телефонисты. В то время этот разъём имел диаметр 6,35 мм. Со временем он стал меньше, и сейчас можно встретить три его варианта: 6,35-мм "джек", 3,5-мм "мини-джек" и 2,5-мм "микро-джек". "Мини-джек" используется в музыкальных плеерах, а "микро-джек" в сотовых телефонах. "Мини-джек" тоже всё чаще стал использоваться в телефонах. Классический "джек" сейчас в основном применяется в профессиональной электронной технике. Для таких кабелей существует множество разъёмов. Например, два контакта передают звук в режиме "моно", а три контакта - стереозвук. "Мини-джек" для камер имеет четвёртый контакт для передачи видео.

TRS — аббревиатура от англ. Tip, Ring, Sleeve, что переводится как Кончик, Кольцо, Гильза; подразумевается форма контактов на штекере. Иногда модификации без центрального контакта (кольца) и с двумя центральными контактами называют TS (англ. Tip, Sleeve) и TRRS (англ. Tip, Ring, Ring, Sleeve) соответственно.

Разъём TRS часто называют «джек» (jack). «Jack» с английского переводится как «гнездо», поэтому иногда разделяют гнездо «джек» и штекер «плаг» (plug). 1/4" TRS называют «четвертьдюймовый джек», а 3,5 мм TRS «мини-джек» (англ. mini-jack).

На приведённой справа иллюстрации: 1 — земля, 2 — правый сигнал (для стерео), 3 — сигнал (для моно) или левый сигнал (для стерео), 4 — изоляция. В профессиональной звукотехнике часто используется балансное подключение, тогда назначение контактов немного другое: 1 — земля, 2 — отрицательный («холодный») сигнал, 3 — положительный («горячий») сигнал.

При подключении моно штекера TS в стерео разъем TRS средний контакт разъема (кольцо, англ. ring) замыкается на землю, что может вызвать повреждение аппаратуры из-за короткого замыкания. В любом случае, полезный сигнал с кольца теряется.

При подключении штекера TRS в разъем TS средний контакт TRS остается не подключенным. Это может быть опасно для лампового оборудования, однако большинство современных устройств не чувствительны к данной проблеме.


Аналогичные проблемы существуют и для TRRS.

Serial ATA (SATA)


Четыре порта SATA на материнской плате.

SATA является последовательным интерфейсом для подключения накопителей (сегодня это, в основном, жёсткие диски) и призван заменить старый параллельный интерфейс ATA. Стандарт Serial ATA первого поколения сегодня используется очень широко и обеспечивает максимальную скорость передачи данных 150 Мбит/с. Максимальная длина кабеля составляет 1 метр. SATA использует подключение "точка-точка", когда один конец кабеля SATA подсоединяется к материнской плате ПК, а второй - к жёсткому диску. Дополнительные устройства к этому кабелю не подключаются, в отличие от параллельного ATA, когда на каждый кабель можно "вешать" два привода. Так что накопители "master" и "slave" уходят в прошлое.


Многие SATA-кабели поставляются с колпачками, защищающими чувствительные контакты.

Переходники питания SATA в разных форматах. В данном случае исходным источником питания является штекер Molex.

Так питаются жёсткие диски SATA.

Кабели поставляются в различных цветах.

Хотя SATA был разработан для использования внутри корпуса ПК, ряд продуктов предоставляют и внешние интерфейсы SATA.

Питание накопителям SATA может обеспечиваться двумя способами: через классическую вилку Molex...

...или с помощью специального кабеля питания. Но сегодня от Molex'a потихоньку отказываются и уже блоки питания поставляются с одним-двумя проводами с штекером Molex или (модели подороже) с модульной системой подключения проводов питания, т.е. какие провода необходимы те и подключайте.

ATA/133 (Parallel ATA, UltraDMA/133 или E-IDE)

Параллельная шина передаёт данные с жёстких дисков и оптических накопителей (CD и DVD) и обратно. Она известна как параллельная ATA (Parallel ATA) и сегодня уступает место последовательной ATA (Serial ATA). Последняя версия использует 40-контактный провод с 80 жилами (половина на "землю"). Каждый такой кабель позволяет подключать, максимум, два накопителя, когда один работает в режиме "master", а второй - в "slave". Обычно режим переключается с помощью небольшой перемычки на накопителе ("джампера").


Ленточный шлейф IDE.

Подключение DVD-привода: красная полоска на шлейфе должна всегда находиться рядом с разъёмом питания.

Тут стоит отметить, что 0-контакт (та самая красная полоска) не всегда бывает красным, например на черных шлейфах от ASUS этот проводник белый. Во всяком случае он отличается цветом от всех остальных.

Интерфейс ATA/133 для классического 3,5" жёсткого диска (внизу) или 2,5" версии (вверху).

Если вы желаете подключить 2,5" накопитель для ноутбуков к обычному настольному ПК, то можно использовать такой же переходник.

Предупреждение: в большинстве случаев подключить интерфейс неправильно невозможно из-за выступа с одной стороны (центральный ключ), но у старых кабелей он может отсутствовать. Поэтому следуйте следующему правилу: конец шлейфа, маркированный цветной полоской (чаще всего красной), всегда должен совпадать с контактом номер 1 на материнской плате, а также должен быть ближе к разъёму питания привода CD/DVD. Чтобы предотвратить неправильное подключение, у многих кабелей и разъёмов отсутствует одна контактная ножка или контактное отверстие в середине.

Здесь вспоминаются винчестеры и CD/DVD-приводы, принесенные на ремонт, с одной выломанной ножкой по центру разъема. Это говорит о том, что "против лома нет приема", не стоит усердствовать и применять чрезмерную силу если штекер не входит в разъем - лучше потерпеть несколько минут и разобраться.


 
Один шлейф поддерживает подключение двух устройств: скажем, двух жёстких дисков или жёсткого диска в паре с DVD-приводом. Если к шлейфу подключены два устройства, то одно следует настроить как "master", а второе - как "slave". Для этого придётся воспользоваться перемычкой. Обычно она выставляется на ту или иную настройку. Если есть сомнения - обратитесь к документации (или сайту производителя накопителя). Часто на корпусе кстройства, на этикетке, есть примечание о назначении штырьков.

ATA - Advanced Technology Attachment 
E-IDE - Enhanced Integrated Drive Electronics

AGP - Accelerated Graphics Port


AGP-слот с защёлкой для графической карты.

Большинство старых графических карт использовали интерфейс Accelerated Graphics Port (AGP). У самых старых систем для той же цели применяется интерфейс PCI. Впрочем, на замену обоим интерфейсам призван PCI Express (PCIe). Несмотря на название, PCI Express является последовательной шиной, а PCI (без суффикса Express) - параллельной. В общем, шины PCI и PCI Express не имеют ничего общего, помимо названия.


Графическая карта AGP (сверху) и графическая карта PCI Express (снизу).

Материнские платы для рабочих станций используют слот AGP Pro, который обеспечивает дополнительное питание для прожорливых карт OpenGL. Впрочем, в него можно устанавливать и обычные графические карты. Однако AGP Pro так и не получил широкое признание. Обычно прожорливые графические карты комплектуются дополнительным гнездом питания - для той же вилки Molex, к примеру.

Дополнительное питание для графической карты: гнедо Molex.

Дополнительное питание для графической карты: 4- или 6-контактное гнездо.

Если вы любите копаться в "железе", то следует помнить о двух уровнях напряжения интерфейса. Стандарты AGP 1X и 2X работают на 3,3 В, в то время как AGP 4X и 8X требуют всего 1,5 В. Кроме того, существуют карты типа Universal AGP, которые подходят для разъёма любого типа. Чтобы предотвратить ошибочную установку карт, слоты AGP используют специальные выступы. А карты - прорези.

 
У верхней карты есть прорезь для AGP 3,3 В. В середине: универсальная карта с двумя вырезами (один для AGP 3,3 В, второй - для AGP 1,5 В). Снизу показана карта с вырезом справа для AGP 1,5 В.


PCI Express: последовательная шина

Слоты расширения материнской платы: PCI Express x16 линий (сверху) и 2 PCI Express x1 линия (снизу).

Два слота PCI Express для установки двух графических карт nVidia SLi. Между ними можно заметить маленький слот PCI Express x1.

PCI Express является последовательным интерфейсом, и его не следует путать с шинами PCI-X или PCI, которые используют параллельную передачу сигналов.

PCI Express (PCIe) является самым современным интерфейсом для графических карт. В то же время, он подходит и для установки других карт расширения, хотя на рынке пока их очень мало. PCIe x16 обеспечивает в два раза большую пропускную способность, чем AGP 8x. Но на практике это преимущество так себя и не проявило.


Графическая карта AGP (сверху) в сравнении с графической картой PCI Express (снизу).

Сверху вниз: PCI Express x16 (последовательный), два интерфейса параллельной PCI и PCI Express x1 (последовательный).

PCI и PCI-X: параллельные шины

PCI является стандартной шиной для подключения периферийных устройств. Среди них можно отметить сетевые карты, модемы, звуковые карты и платы захвата видео.

Среди материнских плат для широкого рынка больше всего распространена шина PCI стандарта 2.1, работающая на частоте 33 МГц и имеющая ширину 32 бита. Она обладает пропускной способностью до 133 Мбит/с. Производители так широко и не приняли шины PCI 2.3 с частотой до 66 МГц. Именно поэтому карт данного стандарта очень мало. Но некоторые материнские платы этот стандарт поддерживают.

Ещё одна разработка в мире параллельной шины PCI известна как PCI-X. Данные слоты чаще всего встречаются на материнских платах для серверов и рабочих станций, поскольку PCI-X обеспечивает более высокую пропускную способность для RAID-контроллеров или сетевых карт. К примеру, шина PCI-X 1.0 предлагает пропускную способность до 1 Гбит/с с частотой шины 133 МГц и разрядностью 64 бита.


Спецификация PCI 2.1 сегодня предусматривает напряжение питания 3,3 В. Левый вырез/выступ предотвращает установку старых 5-В карт, которые показаны на иллюстрации.

Карта с вырезом, а также PCI-слот с ключом.

RAID-контроллер для 64-битного слота PCI-X.

Продолжение в статье: Интерфейсы - все о них (Часть 2)

Категория: Полезно | Добавил: Den (13.12.2010)
Просмотров: 9281 | Теги: USB, SATA, Интерфейсы | Рейтинг: 5.0/6
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright weekend24.ucoz.com © 2018 | Конструктор сайтов - uCoz